SYNTHESIS OF CONDENSED 1,2,4-TRIAZINE

SYSTEMS FROM 2(8)-METHYLMERCAPTOIMIDAZOLES

M. V. Povstyanoi, P. M. Kochergin,

UDC 547.785.5.07 E. V. Logachev, É. A. Yakubovskii,

A. V. Akimov, and V. V. Androsov

The corresponding 2-substituted N-acylmethylimidazoles (benzimidazoles) (I-II) were obtained by reaction of 4,5-diphenyl-2-imidazolyl methyl sulfone and 2-methylmercaptobenzimidazole with α -halo ketones. Compounds III-VI were obtained by heating I and II and 3-phenacyl-2-methylmercaptonaphtho-[1,2-d]imidazole and 7-phenacyl-8-methylmercaptotheophylline with hydrazine hydrate or phenylhydrazine.

EXPERIMENTAL

1-Phenacyl-4,5-diphenyl-2-imidazolyl Methyl Sulfone (I). This compound was obtained as colorless needles with mp 199-200° (from methanol). IR spectrum (KBr): 1705 cm⁻¹ (CO).

1-Phenacyl-2-methylmercaptobenzimidazole (II). This compound was obtained as colorless prisms with mp 185-186° (from aqueous alcohol). IR spectrum (KBr): 1690 cm⁻¹ (CO).

The structures of the compounds obtained were confirmed by the results of elementary analysis, the UV spectra, and alternative synthesis of some of the compounds from the appropriate N-acylmethyl-2haloimidazoles and hydrazines.

TABLE 1. Characteristics of Derivatives III-VI

Com- pound	R	mp, °C (dec.)	Crystallization solvent	IR spectrum, cm ⁻¹ , NH (KBr)	PMR spec- trum, - CH_2 -, δ , ppm (in CF_3COOH)	Yield, %
IIIa IIIb IVa IVb Va Vb VIa VIb	$\begin{array}{c} H \\ C_6H_5 \\ H \\ C_6H_5 \\ H \\ C_6H_5 \\ H \\ C_6H_5 \\ H \\ C_6H_5 \end{array}$	269—270 249—250 305—308 228—230 312—313 245—246 319—320 228—230	Acetic acid— water Dioxane—water DMFA Dioxane DMFA Dioxane—water DMFA—water Isopropyl alcohol	3230, 3280 	4,75 4,85 5,33 5,15 4,78 4,65 5,34 5,10	75 92 68 60 68 85

Kherson Branch, M. V. Lomonosov Odessa Technologic Institute of the Food Industry. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1696-1697, December, 1974. Original article submitted June 3, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011, No part of this publication may be reproduced. stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.